AQQA Campus Network

BSC (Hons) Computing and Internet Technology BSC (Hons) Com
Toby Oxborrow
December 2006

```
l}\begin{array}{l}{\mathrm{ Being able to deliver a network that suits AQQA needs has been the driving force}}\\{\mathrm{ behind the development of this network. Adhering to the companies main }} priorities has been of the utmost importance.
```

Single Manufacturer:
HP has been chosen to HP has been nchosen to supply network devices for the
proposed desig. Their
is wace in the the enterprisise marke is well established. Their range of devices has allowed
the choice of devices that best suits AQQA's needs. Flexibisitity for the successor company:
This point, more than any other has shaped This point, more than any other, has shaped the
network. The design has never tried to tie itself down to AQQA's own traffic requirements. Instead, it offers
generic paths and expectations about future development. For example, atthough not immediately
required; $10 G b E$ links have been set up in TAG and required; 10 GbE links have been set up in $T A G$ and
Poole House C. These allow internal department restructure by AQQA and providide the suarcessor with
plenty of choice about placement. plenty of choice about placement.
By keeping the design simple and generic, a potential
buyer can easily see how they could use this network buyer can easily see how they could use this netw
for themselves, improving the chance of a sale.

Low Price:
HP's products have allowed a flexible, future proofed
design be made at an affordable price without compromising quality
Congestion limited to 10 minutes: The use of aggregate links and 10Gb Ethernet allows
datata to flow unhindered. Qos features of the switche data to flow unhindered. Qos features of
will allow prioritisation of critical traffic.

Loss limited to $\mathbf{3 0}$ minutes:
Every building is connected too one or two others via a
redundant 1000BASE-X fibre, should their primary link and
to the core fail. stacked suvitches have been used
extensively at the cistribution layer and will stop extensively at the distribution layer and will stop a
device failure from causing noticeable harm. device failure from causing noticeabie harm.
However, should a switch need repla ing, spares are
kept on-site for iust his pursose ey using similar kept on-site for just this purpose. By using similar
models throughout the cost of keeping spare switches

Other Design Elements:

 The servers have been combined as much as possible. Thissimplifies management and physical security. To avoid putting undue pressure on a single Core switch and to avolp reduce ocngestion, network load has been
to istributed across Dorset House A and B by dividing the distribute
servers.
All servers located in Dorset House A and B are connected
to two separate stacked $10 G 6 E$ switches to provide the most totwo separate
reliable service.

Should one of the Core switches fail, Dorset House A acts as
a redundant link to Dorset House B (and visa-versa).
Talbot and Kimmeridge Houses' current bandwidth usage is puture, they both have an unlit fibre link to the core laid.

Key Hardwar

Access Switch

ProCurve Switch 2510-24
-20×1011000 AESE-T ports
-2×1000 ASE-T Uplink ports

Distribution Switch

Procurve Switch
$3500 y 1-24 G-$-PWR

 Its Comprenensive Layer 3 features and
Iochb supportmeke this switch up to the
task of distribtion Its placement in all buildings, even those
without active 10 Gbb links, allow a simplem without active 10GbE
upgrade in the tuture.

Server Switch
四-1010

$$
\begin{aligned}
& \text { ProCurve Switch } \\
& 6400 \mathrm{cI}
\end{aligned}
$$

.
With six 10 OGBAAEECX4 ports this was the
perfect choice of switch to provide a group perfect choice of switc to provide a groun
of servers. with thelir current and future

Core Switch

[^0]
[^0]: The filexible configuration options allow
 futures Supports a range of fornnection
 including 1GbE and 10GbE fibe. Each pair of switches is backered ip by a
 recundinnt tower supply to ensure reliable
 function.

